US009250999B1

a2 United States Patent

(10) Patent No.: US 9,250,999 B1

Barroso 45) Date of Patent: Feb. 2, 2016
(54) NON-VOLATILE RANDOM ACCESS (56) References Cited
MEMORY IN COMPUTER PRIMARY US. PATENT DOCUMENTS
MEMORY -
) o 7,293,191 B1* 11/2007 Arumughametal. 714/5.11
(71) Applicant: GOOGLE INC., Mountain View, CA 8,719,520 B1* 572014 Piszczek etal. 711/161
(US) 2003/0005354 Al* 1/2003 Kalman 714/7
2005/0038958 Al* 2/2005 Jadon etal. . .. 711/114
. . 2005/0039090 A1* 2/2005 Jadonetal. 714/718
(72) Inventor: Luiz Andre Barroso, Los Altos, CA 2007/0038593 Al* 22007 Critchley et al. oo 7071
(US) 2008/0082750 Al* 4/2008 Okin etal. 711115
2008/0151724 Al* 6/2008 Anderson etal. 369/53.42
73) Assignee: Google Inc., Mountain View, CA (US 2009/0049251 Al* 2/2009 Bartfaietal. 711/154
g g s s
2009/0313617 A1* 12/2009 Hung 717/168
* . . - . 2012/0278528 Al* 11/2012 Galbraith et al. .. 711/103
() NOtlce' SubJeCt. to any dlSCIalmer{ the term Ofthls 2013/0290759 Al E3 10/2013 Kumar et al' """"" . 713/323
patent is extended or adjusted under 35 2013/0339572 A1* 12/2013 Fanning et al. 711102
U.S.C. 154(b) by 99 days. 2014/0013045 Al1* 1/2014 Crossland etal. 711/105
2014/0173017 Al* 6/2014 Takagi etal. 709/213
. 2014/0201314 Al* 7/2014 Borkenhagen 709/216
(21) Appl. No.: 14/083,855
2014/0281152 Al1* 9/2014 Karamchetietal. 711/103
_ 2014/0304469 Al* 10/2014 Wu 711/114
(22) Filed: Nov. 19, 2013 2015/0082081 Al* 3/2015 Akirav etal. 714/6.22
(51) Int.ClL * cited by examiner
G11C 29/00 (2006.01)
GOG6F 11/10 (2006.01) Primary Examiner — Guerrier Merant
GO6F 12/02 2006.01 74) Attorney, Agent, or Firm — Brake Hughes Bellermann
ey, Ag g
HO3M 13/15 (2006.01) LLP
(52) U.S.CL
CPC ... GOGF 11/1068 (2013.01); GOGF 12/0246 (57) ABSTRACT
(2013.01); HO3M 13/1515 (2013.01) A method includes deploying non-volatile random access
(58) Field of Classification Search memory (NVRAM) in a memory arrangement coupled to a

CPC GOG6F 11/1658; GO6F 12/0804; GO6F
11/2043; GOG6F 11/2035; GO6F 11/1471;
GOG6F 11/1469; GOG6F 11/1076; GO6F 11/1612;
GOG6F 12/0684; GOGF 3/065; GOGF 12/0246;
GOG6F 3/0604; GOG6F 3/067; GOGF 3/0688;
GOG6F 2003/0697; GOGF 11/1068; G11B
33/127; HO3M 13/1515
See application file for complete search history.

CPU core of a computing device via a memory bus. The
method further includes configuring the CPU core to conduct
NVRAM read operations directly over the memory bus, and
providing an I/O logic device to process write instructions
initiated by the CPU core as a Direct Memory Access (DMA)
write operation on the NVRAM.

25 Claims, 7 Drawing Sheets

Load (x} 14p
14

controller

/~ 1 120
112 Memory
\ / controller /
1 12\
116
Write (y) /

2

160 a

110 Controller |2

NVRAM write /‘ 170

US 9,250,999 B1

Sheet 1 of 7

Feb. 2, 2016

U.S. Patent

ccl ¥l

zZ>0r<s |
s |—)
|/

|

Z>x <=
Axr<=

1C
Dr<=

13(|0U02
Alows

0zl

0EL " oL \ \

I\ J9||01u0D
LM NVHAN

/

13(|0QU0D O/l
091

(£) a1pA

L—"" 9Ll

’\

[N:

[N:

\v__\\

0Ll (x) peo

U.S. Patent

/114/

Controller 270

Y
LT NVRAM write

\ cpu,
\ CPUn-1

212

_—"/

212
116
Write (y)

Feb. 2, 2016 Sheet 2 of 7 US 9,250,999 B1
S X
\ | zZ>x<s |)
1C
| Z>xr L= | <
[aN]
2 C -
| Ax<s
1C
5 | on:::E |
(O 3
§=J 5 N
e =g \\ £
N 2 -
= g O
ge) —
S LL

US 9,250,999 B1

Sheet 3 of 7

Feb. 2, 2016

U.S. Patent

¢ Old

N

usnuMm Buleg saull INWHAN 10 9Uyded NvHd

8¢e

Hidiyo
NVHAN

HEEBE ediyo ediyo

NVHAN | | WYHAN

)

tdiyo
NVHAN

J

/
9ze :\ ~

vee

vee l\\\\

¢¢€ A TNAON AHJONTIN WYHAN

US 9,250,999 B1

Sheet 4 of 7

Feb. 2, 2016

U.S. Patent

ey —

vaK

v Old

d3T1041NOD 003

Hudiyo
NVHAN

)

rdiyo
NVHAN

cdiyo
NVHAN

Ldiyo
NVHAN

vey

_/

uanm buieq Asng diyn

avzy

447

J1NAON AJOWIN WVHAN

U.S. Patent Feb. 2, 2016 Sheet 5 of 7 US 9,250,999 B1

[
o

1

(@]
o

Provide NVRAM as memory modules (e.g., dual-in-line memory modules
(DIMMs)) in a memory arrangement coupled to the CPU core of the
computing device via a memory bus

2

o

Configure the CPU core to conduct NVRAM read operations over the
memory bus

[

30

Use an I/O logic device (e.g., a NVRAM write controller) to process
NVRAM write instructions initiated by the CPU core as a Direct Memory
Access (DMA) write operation on the NVRAM

s |
| Use an 110 logic device disposed on an I/O bus of the computing |
|device _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J
r-—— " s34 |

| Use an I/O logic device disposed in the CPU core of the |
| computing device |

U.S. Patent Feb. 2, 2016 Sheet 6 of 7 US 9,250,999 B1

(2]
(e»)

o
o

1

Designating the addresses or portions of the NVRAM to which a NVRAM
write operation is directed inaccessible to NVRAM read operations
initiated by the CPU unit for a duration of the NVRAM write operation

62

o

Caching a copy of the data stored at the addresses or portions of the
NVRAM before the NVRAM write operation begins

[o2]

630

Encoding data in multiple places in the NVRAM to create data replicas in
the NVRAM, or encoding data in multiple places in the NVRAM using an
error correction code that allows reconstruction of data stored in a
portion of the NVRAM that is not read-accessible during a DMA write
operation (or erased, damaged or corrupted) by decoding data in a
portion or portions of the NVRAM that are read-accessible (630).

| encoding and decoding data stored in the NVRAM using an Error |
| Correction Code (ECC) controller coupled to the NVRAM |

640
Making a copy (a cached copy, a replica copy or a reconstructed copy)
of the data, which was stored at the addresses or portions of the NVRAM
before the NVRAM write operation began, available for NVRAM read
operations initiated by the CPU unit for the duration of the NVRAM write
operation

FIG. 6

US 9,250,999 B1

Sheet 7 of 7

Feb. 2, 2016

U.S. Patent

- 147
801

29 & <

BraT

] i i el |
1] i el il |

\- 0L
902

9L

4/ 002

US 9,250,999 B1

1
NON-VOLATILE RANDOM ACCESS
MEMORY IN COMPUTER PRIMARY
MEMORY

TECHNICAL FIELD

This disclosure generally relates to computing devices
(e.g., servers, desktop computers, laptops, smartphones, etc.).
In particular, the disclosure relates to management of
memory in the computing devices.

BACKGROUND

One of the most-demanded resources in computing devices
(other than the CPU) is system memory. In computing,
memory refers to the physical devices used to store programs
or data on a temporary or permanent basis for use in a com-
puter or other digital electronic device. The term primary
memory is used for semiconductor memory devices (i.e.
dynamic random access memory (DRAM) and static random
access memory (SRAM)), which function at high-speed. The
term secondary memory is used for memory devices such as
hard disk drives (HDD) and solid state drives (SSD), which
may be relatively slow to access but offer higher memory
capacity than conventional random access memory (e.g.,
DRAM).

DRAM and SRAM are both volatile memory, i.e. they can
maintain data only for as long as power is applied. This may
be contrasted with non-volatile random access memory
(NVRAM) that retains its information even when power is
turned off.

Newer semiconductor chip technologies (e.g., phase-
change memory, magneto-resistive memory (or memristors),
spin-torque memory, etc.) have increased chip capacity so
that a newer flash memory may now compete with conven-
tional secondary memory (such as HHDs and SSDs) in offer-
ing higher memory capacity and also in slashing an access
penalty for solid state storage (e.g., compared to SSDs). The
newer flash memory may be as fast as conventional DRAM
for processor load or read operations. However, the newer
flash memory may still be significantly slower (~10x) than
conventional DRAM for processor store or write operations
(both in latency and throughput). For convenience in descrip-
tion herein, the newer high capacity flash memory may be
referred to hereinafter as “non-volatile random access
memory (NVRAM)”.

Consideration is now being given to the use of NVRAM in
memory arrangements that are coupled to a processor or
processor unit in a computing device. In particular, attention
is directed to mitigating or managing the effect of processor
store or write operations for NVR AM that may be slower than
those for conventional DRAM.

SUMMARY

In a general aspect, a method includes providing non-
volatile random access memory (NVRAM) in a memory
arrangement coupled to a processor (e.g., central processing
unit (CPU)) of a computing device via a memory bus. The
processor may include one or more CPU cores that are con-
figured to conduct NVRAM read operations directly over the
memory bus. The method further includes using an input/
output (I/O) logic device coupled to the one or more CPU
cores and the memory arrangement to process a write instruc-
tion initiated by one of the CPU cores as a Direct Memory
Access (DMA) write operation on the NVRAM.

10

25

30

35

40

45

55

2

In a further aspect, the 1/O logic device is disposed on an
1/Obus of the computing device or on a same die or chip as the
CPU cores in the processor of the computing device.

In a general aspect, a method for avoiding non-volatile
random access memory (NVRAM) read-write conflicts in a
computing device includes reconstructing a copy of data
stored in a portion of a NVRAM in the computing device that
is not read-accessible during a Direct Memory Access
(DMA) write operation. The reconstruction may be based on
data stored in a portion or portions of the NVRAM that are
read-accessible. The method further includes making the
reconstructed copy of the data stored in the portion of the
NVRAM that is not read-accessible during the DMA write
operation available to a NVRAM read operation initiated by
a CPU core of the computing device for a duration of the
DMA write operation.

In a general aspect, a computing device includes a proces-
sor (e.g., a central processor unit (CPU)). The processor may
include one or more CPU cores coupled to a memory arrange-
ment on a memory bus viaa memory controller. The comput-
ing device further includes a non-volatile random access
memory (NVRAM) disposed in the memory arrangement on
the memory bus, and a NVRAM write controller connected to
the CPU cores and the memory arrangement, the NVRAM
write controller configured to access the memory arrange-
ment independently of the one or more CPUs, where the CPU
core is configured to conduct NVRAM read operations initi-
ated by the one or more CPUs through the memory controller
and to conduct NVRAM write operations initiated by the one
or more CPUs through the NVRAM write controller config-
ured to access the memory arrangement independently of the
one or more CPUs.

Ina general aspect, a memory module includes one or more
NVRAM chips mounted on a circuit board, and a DRAM
cache coupled to the one or more NVRAM chips. The DRAM
cache is configured to cache a copy of data stored in a portion
of'the one or more NVRAM chips.

Ina general aspect, a memory module includes one or more
NVRAM chips mounted on a circuit board; and an error
correction code (ECC) controller coupled to the one or more
NVRAM chips. The ECC controller is configured to encode
and decode data stored in the one or more NVRAM chips
according to an error correction code.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustration of a com-
puting device including a memory arrangement, which
involves use of NVRAM, in accordance with the principles of
the disclosure herein.

FIG. 2 is a schematic block diagram illustration of a com-
puting device which utilizes a modified processor for man-
aging NVRAM disposed in primary memory of the comput-
ing device, in accordance with the principles of the disclosure
herein.

FIG. 3 is a schematic block diagram illustration of an
example NVRAM memory module, in accordance with the
principles of the disclosure herein.

FIG. 4 is a schematic block diagram illustration of another
example NVRAM memory module, in accordance with the
principles of the disclosure herein.

FIG. 5 is a flowchart illustration of an example method for
deploying and managing NVRAM, which may be coupled to

US 9,250,999 B1

3

a CPU core of a computing device, in accordance with the
principles of the disclosure herein.

FIG. 6 is a flowchart illustration of an example method for
avoiding NVR AM read-write conflicts in a computing device
in which NVRAM write operations initiated by a CPU core
are conducted as Direct Memory Access (DMA) operations at
a slower speed than NVRAM read operations initiated by the
CPU core, in accordance with the principles of the disclosure
herein.

FIG. 7 shows an example of a computer device and a
mobile computer device that can be used to implement the
techniques described here.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

In a standard memory arrangement or architecture for a
computer, a processor or processors in a central processor unit
(CPU) core of the computer may access primary or system
memory over a memory bus (e.g., a standard DRAM memory
bus). DRAM (including various varieties of DRAM such as
DDR, DDR2, DDR3, etc.) may be deployed in the primary or
system memory as memory modules (e.g., dual in-line
memory modules (DIMMs)) on the memory bus. The CPU
core may have a load-store unit that loads data from memory
or stores it back to memory from buffer registers. A memory
controller may control the interactions (e.g., read/write
operations) between the CPU and the DRAM modules on the
on the DRAM memory bus. Further, in some implementa-
tions of the standard memory arrangement or architecture for
the computer, the CPU and memory may be coupled via an
1/0 bus (e.g., PCI or PCI-express bus) to peripheral compo-
nents or devices (e.g., disk drives, printers, network cards,
etc.) of the computer. The peripheral components or devices
may access memory over 1/O bus. The 1/O bus speeds may be
slower than the DRAM memory bus speeds.

NVRAM may be deployed as memory modules (e.g., dual-
in-line memory modules (DIMMs)) in a memory arrange-
ment coupled to a CPU core of a computer via a memory bus,
in accordance with the principles of the disclosure herein. The
memory bus may be a standard DRAM memory bus, which
may also co-host DRAM DIMMs. This arrangement of
NVRAM DIMMS on a standard DRAM memory bus may
exploit the feature that NVRAM read speeds are comparable
to standard DRAM read speeds. However, NVRAM store (or
write) speeds may be slower than standard DRAM store
speeds. NVRAM store operations may have latencies which,
for example, can be about 10x longer than standard DRAM
store latencies. It may be expected that the slower NVRAM
store speeds would be incompatible with conventional
memory controller logic and CPU load/store units, which are
designed for DRAM operations. By keeping regions of
NVRAM address space busy or tied up for long durations, the
slower NVRAM store operations may also interfere with read
(or load) operations of the conventional memory controller
logic and CPU load/store units in the computer.

In accordance with the principles of the present disclosure,
systems and methods are provided herein for integrating use
of NVRAM in computer memory arrangements and manag-
ing the effect of the asymmetrical NVRAM load and store
access times. The disclosed systems and methods may
involve using I/O style write operations (e.g., direct Memory
Access (DMA) operations) for NVRAM stores while using
memory bus read operations (e.g., DRAM read operations)
for NVRAM loads.

10

15

40

45

50

4

FIG. 1 shows an example system or computing device 100
including a memory arrangement 120, which involves use of
NVRAM, in accordance with the principles of the disclosure
herein. Computing device 100 may, for example, include a
processor 110 coupled to memory arrangement 120 via a
memory bus 130. Processor 110 may include one or more
CPUs 112, which may be arranged on a processor bus (not
shown). Processor 110 may also include a memory controller
140 for memory bus 130, and an I/O controller 160 for an /O
bus 150 (e.g., a PCI or PCle bus). I/O bus 150, which may
branch off memory bus 130, may operate on a speed which is
lower than memory bus 130 speed. I/O bus 150 may be
configured to connect processor 110 and memory arrange-
ment 120 to peripheral components (e.g., printers, network
cards, etc.) (not shown) of computing device 100. In accor-
dance with the principles of the present disclosure, an /O
logic circuit or device (e.g., NVRAM write controller 170)
may be disposed on I/O bus 150.

1/0 logic device/NVRAM write controller 170 may be
configured to access memory arrangement 120 over 1/O bus
150 independently of CPU 112. NVRAM write controller
170 may, for example, be an application-specific integrated
circuit (ASIC) or a field programmable gate array (FPGA)
logic chip, which has local buffering and at least one Direct
Memory Access (DMA) engine or controller. The DMA
engine may be the same or similar to those found, for
example, on common computer I/O peripherals (e.g., disk
drive controllers, graphics cards, network cards and sound
cards). The DMA engine in NVRAM write controller 170
may be configured, for example, to generate addresses and
initiate memory write cycles. Further, the DMA engine in
NVRAM write controller 170 may contain one or more buffer
registers to which data can be written by CPU 112.

In computing device 100/memory arrangement 120,
NVRAM may be deployed as individual memory modules
(e.g., NVRAM 122) on memory bus 130. Memory bus 130
may be a standard DRAM memory bus, which may also
co-host DRAM DIMMs 124. Further, CPUs 112, memory
controller 140, I/O controller 160 and I/O bus 150 may have
conventional or traditional designs suited for computer archi-
tectures that traditionally deploy, for example, only DRAM
instead of the NVRAM described herein in primary memory
arrangements.

Computing device 100 may be configured so that NVRAM
read or load operations (e.g., “load x” 114) by initiated by
CPU 112 are performed through normal processor loads (e.g.,
load/store units) and over memory bus 130 in the same man-
ner or rates as DRAM load operations directly over memory
bus 130 via memory controller 140. However, system 100
may be further configured so that the slower NVRAM write
or store operations by CPU 112 via memory controller 140
are additionally routed through I/O bus 150/ NVRAM write
controller 170. The NVRAM writes/stores may be buffered
(e.g., on NVRAM DIMMS) for completion at the slower rates
under supervision of NVRAM write controller 170 while
CPU 112 is freed to carry out other operations. To avoid
overloading or exceeding a capacity of NVRAM write/store
buffering mechanisms, CPU 112 may, for example, be
restricted to issuing NVRAM write/stores at the rates lower
than the rates at which CPU 112 can issue NVRAM read/
loads. Further, to avoid write conflicts NVRAM 122 pages
involved in a write/store operation may be mapped with only
read privileges so that any CPU 112 write instructions to
NVRAM 122 via memory controller 140 would return a page
exception.

For NVRAM write or store operations (e.g., “write (y)”
116) initiated by CPU 112, system 100 may be configured to

US 9,250,999 B1

5

use NVRAM write controller 170 to carry out Direct Memory
Access (DMA) operations over 1/O bus 150. To carry out a
write operation (e.g., write (y) 116) CPU 112 may initialize
NVRAM write controller 170 via I/O controller 160, for
example, with a count of a number of blocks, words or pages
to transfer, and the memory address to use. CPU 112 may then
send instructions to NVRAM write controller 170 to initiate
transfer of data (from NVRAM write controller 170°s buffer
registers). NVRAM write controller 170 may then provide
addresses and write control lines to NVRAM 122. While data
transfer from NVRAM write controller 170 to NVRAM 122
is in progress, CPU 112 may be free to conduct other pro-
cessing operations. NVRAM write controller 170 may be
further configured to send an interrupt to CPU 112 when the
data transfer to NVRAM 122 is done, or a completion flag is
set in the CPU memory space.

The NVRAM write command or instruction (e.g., “write
(y)”116) issued by CPU 112 to NVRAM write controller 170
may, for example, be implemented as an explicit /O style
block write operation, which may, for example, be of a type
represented by the following I/O write primitive:

write(void* datablock, int size, long address, bool writ-

e_done);

while(!write_done);

According to the first line of the foregoing snippet of code,
the 1/O style block write operation may write a block of data
to an address. According to the second line of the foregoing
snippet of code, the 1/O style block write operation may wait
for a completion flag to indicate that the write is completed.
Alternatively, the 1/O style block write operation code may
involve registering a method or function to be called back
upon completion.

In example implementations of computing device 100,
NVRAM memory space addresses may be explicitly made
known to programmers, and may be updated using I/O write
primitives of the kind of described above. A small amount of
buffering may be added into I/O space and completion noti-
fication logic in NVRAM controller 170. A write operation
may be implemented using NVRAM controller 170, for
example, with the following (pseudo) code:

write (datablock, size, address, write_done) {

10_Set_Completion Flag(&write_done); // tells 10
device that this

variable is to be set when write is done

10_Write(datablock, address, NVRAM_buffer_entry);
!l writes

datablock and address to a buffer in 10 space}

In response, a logic circuit of NVRAM controller 170 may
initiate a DMA operation transferring data from a buffered
datablock to the associated NVRAM 122, and may then flag
completion of the write operation by setting the write_done
flag.

Using an I/O logic device (i.e. NVRAM controller 170)
connected to I/O bus 150 in the manner described above to
accomplish DMA writes to NVRAM 122 may have the ben-
efit of being implementable (e.g., as system 100) without
requiring any modification to existing off-the-shelf standard
CPUs and memory controllers that are designed for use with
DRAM primary memory.

However, it may be practical in some computer implemen-
tations for managing NVRAM to modify the existing off-the-
shelf standard CPUs and memory controllers. An example
implementation may modify a design of an existing processor
to include a DMA engine (e.g., the DMA engine of NVRAM
write controller 170). F1G. 2 shows, for example, a computing
device 200, which utilizes such a modified processor 210 for
managing NVRAM 122 in primary memory of the computing

20

30

40

45

6

device, in accordance with the principles of the disclosure
herein. Computing device 200 may, for example, include a
processor 210 coupled to memory arrangement 120 via
memory bus 130. Processor 210, like processor 110, may
include one or more CPUs 212, which may be arranged on a
processor bus (not shown) and a memory controller 240 for
memory bus 130. However, unlike processor 110, processor
220 may include a DMA engine (e.g., NVRAM write con-
troller 270) in the core itself. System 210 may be configured
so that CPU 212 may use DMA engine/NVRAM write con-
troller 270 for DMA write operations that move or transfer
data to NVRAM 122 in the background even as CPU 212 is
carrying out other processing functions. CPU 212 may use
DMA engine/NVRAM write controller 270 for DMA write
operations to NVRAM 122 in the same or similar manner as
CPU 112’s use of NVRAM write controller 170 for DMA
write operations described above with reference to comput-
ing device 100 (FIG. 1). In computing device 200, CPU 212
may use DMA engine/NVRAM write controller 270 for
DMA write operations without the overhead that may be
associated with I/O bus 150 and I/O controller 160 in com-
puting device 100.

Inboth computing devices 100 and 200, it may be expected
that load or read operations that may be directed or addressed
to a portion of NVRAM 122 by respective CPUs 112 and 212
may collide or conflict with concurrent or simultaneous DMA
write operations being conducted on the same portion of
NVRAM 122 by the respective NVRAM write controllers
170 and 270. To avoid such read-write conflict, both comput-
ing devices 100 and 200 may be configured with software to
mark as inaccessible designated portions (e.g., words, blocks,
lines, pages) of NVRAM 122 that are undergoing DMA write
operations and to suspend the CPUs’ reading privileges for
the designated portions for the duration of the DMA write
operations. The designated portions of NVRAM 122 may be
re-marked as accessible and reading privileges may be
restored for the CPUs only after the respective NVRAM write
controllers 170 and 270 set flags or otherwise signal comple-
tion of the conflicting DMA write operations.

Alternate or additional schemes to avoid CPU read and
NVRAM controller write conflicts in NVRAM memory (e.g.,
in computing devices 100 and 200) may be hardware based.

An example hardware-based scheme to avoid read-write
conflicts may include caching a copy of the data stored in a
NVRAM memory portion before it is over written by a DMA
write operation and making such copy of the data available for
reading or loading by the CPUs, in accordance with the prin-
ciples of the disclosure herein. A “DRAM” cache, which can
be written to and read at DRAM speeds, may, for example, be
used to hold the copy of the data. FIG. 3 shows an example
NVRAM memory module (e.g., NVRAM 322) for imple-
menting the foregoing caching scheme. NVRAM 322 may
include a series of NVRAM integrated circuits 324, which
may be mounted, for example, on a circuit board 326.
NVRAM 322 may further include a DRAM cache 328
mounted on circuit board 326 and coupled to NVRAM inte-
grated circuits 324. NVRAM 322 may be deployed, for
example, in primary memory (e.g., memory arrangement
120) of computing devices 100 and 200) shown in FIGS. 1
and 2. The systems may be configured so that before a DMA
write operation initiated by NVRAM write controllers 170 or
270 overwrites data in an addressed or target portion (word,
line, block, page, etc.) of NVRAM integrated circuits 324, the
data in the addressed or target portion is read and copied to
DRAM cache 328, for example, by DRAM read and write
instructions issued by CPUs 112 or 122. FIG. 3 schematically

US 9,250,999 B1

7

shows DRAM cache 328 labeled as holding, for example, a
copy of NVRAM lines before they are overwritten by a DMA
write operation.

Another example hardware-based scheme to avoid read-
write conflicts may involve using “RAID-style” data storage
schemes similar to those used for hard disk drives configured
as redundant arrays of independent disks (RAID). RAID-
style data storage schemes may be used for the NVRAM
deployed, for example, in memory arrangement 120 of com-
puting devices 100 and 200. The RAID-style data storage
schemes may involve configuring computing devices 100 and
200 to encode data in multiple places in the NVRAM for
higher reliability either by creating data replicas in the
NVRAM or by encoding data in manner (e.g., using error
correction codes) that allows reconstruction of data in the
portions of the NVRAM that are not accessible during a DMA
write operation (or erased, damaged or corrupted) by decod-
ing data in the portions of the NVRAM that are accessible.
The replica data or the reconstructed data (which may be
referred to herein collectively as “reconstructed data”) for the
portions of the NVRAM that are not accessible during a DMA
write operation may be made available for read or load opera-
tions issued by the CPUs in computing devices 100 and 200
concurrently or simultaneously with the DMA write opera-
tion.

An example RAID-style data storage scheme may involve
using, for example, Reed-Solomon error correction codes. An
error correction code (ECC) engine or controller may be used
to encode and decode the data. FIG. 4 shows an example
NVRAM memory module (e.g., NVRAM 422) configured
for implementing the RAID-style data storage scheme that
utilizes error correction coding. NVRAM 422 may include a
series of NVRAM integrated circuits or chips 424, which may
be mounted, for example, on a circuit board 426. NVRAM
422 may further include an error correction code (ECC) con-
troller 428 (e.g., a Reed-Solomon encoder/decoder) mounted
on circuit board 426 and coupled to NVRAM integrated
circuits or chips 424. NVRAM 422 may be deployed, for
example, in primary memory (e.g., memory arrangement
120) of computing devices 100 and 200 shown in FIGS. 1 and
2, respectively. The computing devices may be configured so
that when a DMA write operation initiated by NVRAM write
controllers 170 or 270 renders an addressed or target portion
(word, line, block, page, etc.) of NVRAM integrated circuits
or chips 424 inaccessible, the data in the inaccessible portion
can be reconstructed by ECC controller 428 using data in
portions the NVRAM that are still accessible for “reconstruc-
tion” reads. FIG. 4 schematically shows, for example, an
inaccessible chip 424' labeled as “chip busy being written to”
because of the DMA write operation. In such a case, ECC
controller 428 may be configured to read data from the other
chips 424 in NVRAM 442 and use the data to compute or
reconstruct the contents of busy chip 4245. ECC controller
428 may make the computed or reconstructed contents of
busy chip 4245 available the CPUs (112 or 212) to complete
a read operation issued by the CPUs (112 or 212) concur-
rently or simultaneously with the DMA write operation.

FIG. 5 shows an example method 500 for deploying and
managing NVRAM coupled to a CPU core of a computing
device, in accordance with the principles of the disclosure
herein. In particular, method 500 may relate to mitigating or
managing effects of asymmetrical NVRAM load and store
access times (which may be asymmetrical by a factor of 10x)
on system performance.

Method 500 may include providing NVRAM as memory
modules (e.g., dual-in-line memory modules (DIMMs)) in a
memory arrangement coupled to the CPU core of the com-

25

30

40

45

50

8

puting device via a memory bus (510), and configuring the
CPU core to conduct NVRAM read operations directly over
the memory bus (520). The NVRAM read operations con-
ducted by the CPU core may be similar to DRAM read opera-
tions conducted directly over the memory bus.

Method 500 may, further include using an I/O logic device
(e.g., a NVRAM write controller) to process NVRAM write
instructions initiated by the CPU core as a Direct Memory
Access (DMA) write operation on the NVRAM (530). Using
an I/O logic device 530 may include using an I/O logic device
disposed on an I/O bus of the computing device (532). Alter-
natively, using an I/O logic device 530 may include using an
1/0 logic device disposed in the CPU core of the computing
device itself (534).

FIG. 6 shows an example method 600 for avoiding
NVRAM read-write conflicts in a computing device in which
the NVRAM write operations initiated by a CPU core are
conducted as Direct Memory Access (DMA) operations at a
slower speed than NVRAM read operations initiated by the
CPU core, in accordance with the principles of the disclosure
herein. The NVRAM write operations initiated by a CPU core
may be processed by an 1/O logic device, which may be
disposed on the a same chip or die as the various CPUs or
cores of a processor (e.g., processor 110 or, 210) or disposed
in an I/O bus linked to the processor. Method 600 may include
making or designating the addresses or portions of the
NVRAM to which a NVRAM write operation is directed as
being inaccessible to NVRAM read operations initiated by
the CPU core for a duration of the NVRAM write operation
(610).

Method 600 may further include caching a copy of the data
stored at the addresses or portions of the NVRAM before the
NVRAM write operation begins (620). Additionally or alter-
natively, method 600 may involve encoding and decoding
data in the NVRAM according to a RAID-style data storage
scheme. Method 600 may, for example, involve encoding
data in multiple places in the NVRAM to create data replicas
in the NVRAM, or encoding data in multiple places in the
NVRAM using an error correction code that allows recon-
struction of data stored in a portion of the NVR AM that is not
read-accessible during a DMA write operation (or erased,
damaged or corrupted) by decoding data in a portion or por-
tions of the NVRAM that are read-accessible (630). The
reconstruction may involve decoding data in the portions of
the NVRAM that remain read-accessible during the DMA
write operation. Method 600 may include encoding and
decoding data stored in the NVRAM using an Error Correc-
tion Code (ECC) controller coupled to the NVRAM (632).
The error correction code used to encode/decode the data
may, for example, be a Reed-Solomon error correction code.

Method 600 may further involve making a copy (a cached
copy, a replica copy or a reconstructed copy) of the data,
which was stored at the addresses or portions of the NVRAM
before the NVRAM write operation began, available for
NVRAM read operations initiated by the CPU core for the
duration of the NVRAM write operation (640). It may be
necessary to cache a larger portion of the NVRAM than the
portion being written in case the architecture of the NVRAM
device is such that larger blocks of address space become
unavailable for read accesses when issuing stores to subsets
of that address space.

A computer system (e.g., computing devices 100 or 200)
may be deployed to implement method 500 and/or method
600 in conjunction with a non-transitory computer-readable
storage medium having instructions stored thereon. The
instructions when executed by one or more microprocessors
may cause the computer system to implement method 500

US 9,250,999 B1

9

and/or method 600 as described in the foregoing with refer-
ence to FIGS. 3 and 4, respectively.

FIG. 7 shows an example of a generic computer device 700
and a generic mobile computer device 750, which may be
used with the techniques described here. Computing device
700 is intended to represent various forms of digital comput-
ers, such as laptops, desktops, workstations, personal digital
assistants, servers, blade servers, mainframes, and other
appropriate computers. Computing device 750 is intended to
represent various forms of mobile devices, such as personal
digital assistants, cellular telephones, smart phones, and other
similar computing devices. The components shown here,
their connections and relationships, and their functions, are
meant to be exemplary only, and are not meant to limit imple-
mentations of the inventions described and/or claimed in this
document.

Computing device 700 includes a processor 702, a memory
704, a storage device 706, a high-speed interface 708 con-
necting to memory 704 and high-speed expansion ports 710,
and a low speed interface 712 connecting to low speed bus
714 and storage device 706. Each of the components 702,
704,706,708, 710, and 712, are interconnected using various
busses, and may be mounted on a common motherboard or in
other manners as appropriate. The processor 702 can process
instructions for execution within the computing device 700,
including instructions stored in the memory 704 or on the
storage device 706 to display graphical information for a GUI
on an external input/output device, such as display 716
coupled to high speed interface 708. In other implementa-
tions, multiple processors and/or multiple buses may be used,
as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 700 may be con-
nected, with each device providing portions of the necessary
operations (e.g., as a server bank, a group of blade servers, or
a multi-processor system).

The memory 704 stores information within the computing
device 700. In one implementation, the memory 704 is a
volatile memory unit or units. In another implementation, the
memory 704 is a non-volatile memory unit or units. The
memory 704 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 706 is capable of providing mass stor-
age for the computing device 700. In one implementation, the
storage device 706 may be or contain a computer-readable
medium, such as a floppy disk device, a hard disk device, an
optical disk device, or a tape device, a flash memory or other
similar solid state memory device, or an array of devices,
including devices in a storage area network or other configu-
rations. A computer program product can be tangibly embod-
ied in an information carrier. The computer program product
may also contain instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 704, the storage device 706, or
memory on processor 702.

The high speed controller 708 manages bandwidth-inten-
sive operations for the computing device 700, while the low
speed controller 712 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only. In
one implementation, the high-speed controller 708 is coupled
to memory 704, display 716 (e.g., through a graphics proces-
sor or accelerator), and to high-speed expansion ports 710,
which may accept various expansion cards (not shown). In the
implementation, low-speed controller 712 is coupled to stor-
age device 706 and low-speed expansion port 714. The low-
speed expansion port, which may include various communi-
cation ports (e.g., USB, BLUETOOTH, Ethernet, wireless

10

15

20

25

30

35

40

45

50

55

60

65

10

Ethernet) may be coupled to one or more input/output
devices, such as a keyboard, a pointing device, a scanner, ora
networking device such as a switch or router, e.g., through a
network adapter.

The computing device 700 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a standard server 720, or multiple
times in a group of such servers. It may also be implemented
as part of a rack server system 724. In addition, it may be
implemented in a personal computer such as a laptop com-
puter 722. Alternatively, components from computing device
700 may be combined with other components in a mobile
device (not shown), such as device 750. Each of such devices
may contain one or more of computing device 700, 750, and
an entire system may be made up of multiple computing
devices 700, 750 communicating with each other.

Computing device 750 includes a processor 752, memory
764, an input/output device such as a display 754, a commu-
nication interface 766, and a transceiver 768, among other
components. The device 750 may also be provided with a
storage device, such as a microdrive or other device, to pro-
vide additional storage. Each of the components 750, 752,
764, 754, 766, and 768, are interconnected using various
buses, and several of the components may be mounted on a
common motherboard or in other manners as appropriate.

The processor 752 can execute instructions within the com-
puting device 750, including instructions stored in the
memory 764. The processor may be implemented as a chipset
of chips that include separate and multiple analog and digital
processors. The processor may provide, for example, for
coordination of the other components of the device 750, such
as control of user interfaces, applications run by device 750,
and wireless communication by device 750.

Processor 752 may communicate with a user through con-
trol interface 758 and display interface 756 coupled to a
display 754. The display 754 may be, for example, a TFT
LCD (Thin-Film-Transistor Liquid Crystal Display) or an
OLED (Organic Light Emitting Diode) display, or other
appropriate display technology. The display interface 756
may comprise appropriate circuitry for driving the display
754 to present graphical and other information to a user. The
control interface 758 may receive commands from a user and
convert them for submission to the processor 752. In addition,
an external interface 762 may be provide in communication
with processor 752, so as to enable near area communication
of'device 750 with other devices. External interface 762 may
provide, for example, for wired communication in some
implementations, or for wireless communication in other
implementations, and multiple interfaces may also be used.

The memory 764 stores information within the computing
device 750. The memory 764 can be implemented as one or
more of a computer-readable medium or media, a volatile
memory unit or units, or a non-volatile memory unit or units.
Expansion memory 774 may also be provided and connected
to device 750 through expansion interface 772, which may
include, for example, a SIMM (Single In LLine Memory Mod-
ule) card interface. Such expansion memory 774 may provide
extra storage space for device 750, or may also store applica-
tions or other information for device 750. Specifically, expan-
sion memory 774 may include instructions to carry out or
supplement the processes described above, and may include
secure information also. Thus, for example, expansion
memory 774 may be provide as a security module for device
750, and may be programmed with instructions that permit
secure use of device 750. In addition, secure applications may
be provided via the SIMM cards, along with additional infor-

US 9,250,999 B1

11

mation, such as placing identifying information on the SIMM
card in a non-hackable manner.

The memory may include, for example, flash memory and/
or NVRAM memory, as discussed below. In one implemen-
tation, a computer program product is tangibly embodied in
an information carrier. The computer program product con-
tains instructions that, when executed, perform one or more
methods, such as those described above. The information
carrier is a computer- or machine-readable medium, such as
the memory 764, expansion memory 774, or memory on
processor 752 that may be received, for example, over trans-
ceiver 768 or external interface 762.

Device 750 may communicate wirelessly through commu-
nication interface 766, which may include digital signal pro-
cessing circuitry where necessary. Communication interface
766 may provide for communications under various modes or
protocols, such as GSM voice calls, SMS, EMS, or MMS
messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000,
or GPRS, among others. Such communication may occur, for
example, through radio-frequency transceiver 768. In addi-
tion, short-range communication may occur, such as using a
Bluetooth, WiF1i, or other such transceiver (not shown). In
addition, GPS (Global Positioning System) receiver module
770 may provide additional navigation- and location-related
wireless data to device 750, which may be used as appropriate
by applications running on device 750.

Device 750 may also communicate audibly using audio
codec 760, which may receive spoken information from a
user and convert it to usable digital information. Audio codec
760 may likewise generate audible sound for a user, such as
through a speaker, e.g., in ahandset of device 750. Such sound
may include sound from voice telephone calls, may include
recorded sound (e.g., voice messages, music files, etc.) and
may also include sound generated by applications operating
on device 750.

The computing device 750 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a cellular telephone 750. It may also
be implemented as part of a smart phone 752, personal digital
assistant, or other similar mobile device.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which may be special or general purpose, coupled
to receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the terms “machine-readable medium” or “com-
puter-readable medium” refer to any computer program prod-
uct, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used
to provide machine instructions and/or data to a program-
mable processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal used
to provide machine instructions and/or data to a program-
mable processor.

5

10

15

20

25

30

35

40

45

55

60

o

5

12

To provide for interaction with a user, the systems and
techniques described here can be implemented on a computer
having a display device (e.g., a CRT (cathode ray tube) or
LCD (liquid crystal display) monitor) for displaying infor-
mation to the user and a keyboard and a pointing device (e.g.,
amouse or a trackball) by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feed-
back); and input from the user can be received in any form,
including acoustic, speech, or tactile input.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end com-
ponent (e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front end component (e.g., a client computer having a graphi-
cal user interface or a Web browser through which a user can
interact with an implementation of the systems and tech-
niques described here), or any combination of such back end,
middleware, or front end components. The components of the
system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples of communication networks include a local area
network (“LAN”), a wide area network (“WAN”), and the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the invention.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other embodi-
ments are within the scope of the following claims.

What is claimed is:

1. A method comprising:

providing non-volatile random access memory (NVRAM)

in a primary memory of a computing device, the primary
memory including dynamic random access memory
(DRAM), the primary memory coupled to a central pro-
cessing unit (CPU) core of a computing device via a
memory bus, the CPU core configured to conduct
NVRAM read operations directly over the memory bus;
and

using an input/output (I/O) logic device coupled to the

CPU core to process a write instruction initiated by the
CPU core as a Direct Memory Access (DMA) write
operation on the NVRAM, the 1/O logic device coupled
to the CPU core as a peripheral device to the computing
device via an I/O bus.

2. The method of claim 1, wherein the 1/O logic device is
disposed on an I/O bus of the computing device.

3. The method of claim 1, wherein the 1/O logic device is
disposed in a same die as the CPU core of the computing
device.

4. The method of claim 1, wherein providing NVRAM ina
primary memory of the computing device includes:

US 9,250,999 B1

13

providing the NVRAM as a memory module in the primary

memory.

5. The method of claim 4, wherein providing the NVRAM
as a memory module in the primary memory includes:

providing the NVRAM as a dual in-line memory module

(DIMM) in the primary memory.
6. The method of claim 1 further comprising designating a
portion of the NVRAM to which a NVRAM write operation
is directed as being inaccessible to a NVRAM read operation
initiated by the CPU core for a duration of the NVRAM write
operation.
7. The method of claim 6 further comprising caching a
copy of data stored at the portion of the NVRAM before the
NVRAM write operation begins.
8. The method of claim 7 further comprising making the
cached copy of the data available for the NVR AM read opera-
tion initiated by the CPU core for at least the duration of the
NVRAM write operation.
9. The method of claim 1 further comprising encoding data
in multiple places inthe NVRAM to create datareplicas in the
NVRAM.
10. The method of claim 1 further comprising encoding
data in multiple places in the NVRAM using an error correc-
tion code that allows reconstruction of data stored in a portion
of the NVRAM that is not read-accessible during a DMA
write operation by decoding data in a portion or portions of
the NVRAM that are read-accessible.
11. The method of claim 10 wherein the error correction
code is a Reed-Solomon error correction code.
12. The method of claim 10 further comprising encoding
and decoding data stored in the NVRAM using an Error
Correction Code (ECC) controller coupled to the NVRAM.
13. The method of claim 10 further comprising making a
reconstructed copy of the data stored at the portion of the
NVRAM before the NVRAM write operation began avail-
able to the NVRAM read operation initiated by the CPU core
for a duration of the NVRAM write operation.
14. A computing device comprising:
aprocessor including one or more central processing units
(CPUs), the CPUs coupled to a primary memory of the
computing device disposed on a memory bus, the pri-
mary memory including dynamic random-access
memory (DRAM), the CPUs coupled to the primary
memory via the memory bus and a memory controller;

anon-volatile random access memory (NVRAM) disposed
in the primary memory; and

a NVRAM write controller connected to the CPUs and the

primary memory, the NVRAM write controller config-
ured to access the primary memory independently of the
one or more CPUs,

wherein the processor is configured to conduct NVRAM

read operations initiated by the one or more CPUs
through the memory controller and to conduct NVRAM
write operations initiated by the one or more CPUs

15

25

30

40

45

14

through the NVRAM write controller configured to
access the primary memory independently of the one or
more CPUs.

15. The computing device of claim 14, wherein the
NVRAM write controller is disposed on I/O bus connected to
the one or more CPUs and the primary memory of the com-
puting device.

16. The computing device of claim 14, wherein the
NVRAM write controller is disposed on a same die as a CPU.

17. The computing device of claim 14, wherein the
NVRAM write controller includes one or more buffer regis-
ters and a Direct Memory Access (DMA) engine configured
to generate addresses and initiate memory write cycles.

18. The computing device of claim 17, wherein a CPU is
configured to carry out a NVRAM write operation by:

initializing the NVRAM write controller with a count of a

number of blocks of data to transfer from the one or more
buffer registers, and the memory addresses to use for the
NVRAM write operation, and

initiating transfer of data from the NVRAM write control-

ler to the NVRAM; and

wherein the NVRAM write controller is configured to pro-

vide the memory addresses and write control lines to the
NVRAM.

19. The computing device of claim 18, wherein the CPU is
free to conduct other processing operations while data trans-
fer from NVRAM write controller to the NVRAM is in
progress.

20. The computing device of claim 19, wherein NVRAM
write controller is configured to send an interrupt to the CPU
when the data transfer to NVRAM is done.

21. The computing device of claim 18, wherein a CPU is
configured to carry out a NVRAM write operation as an
explicit I/O style block write operation of a type represented
by the following I/O write primitive:

write(void* datablock, int size, long address, bool writ-

e_done); while(write_done).

22. The computing device of claim 21, wherein the I/O
style block write operation involves setting a flag upon
completion or registering a function to be called back upon
completion.

23. The computing device of claim 18 further configured to
designate a portion of the NVRAM undergoing a NVRAM
write operation as being inaccessible to the one or more CPUs
for a duration of the NVRAM write operation.

24. The computing device of claim 23 further configured to
make a copy of data stored in the portion of the NVRAM
before the NVRAM write operation begins and to make the
copy available for NVRAM read operations initiated by the
one or more CPUs for at least the duration of the NVRAM
write operation.

25. The computing device of claim 24, wherein the copy of
data stored in the portion of the NVRAM before the NVRAM
write operation begins is a cached data copy, a replica data
copy or a reconstructed data copy.

#* #* #* #* #*

